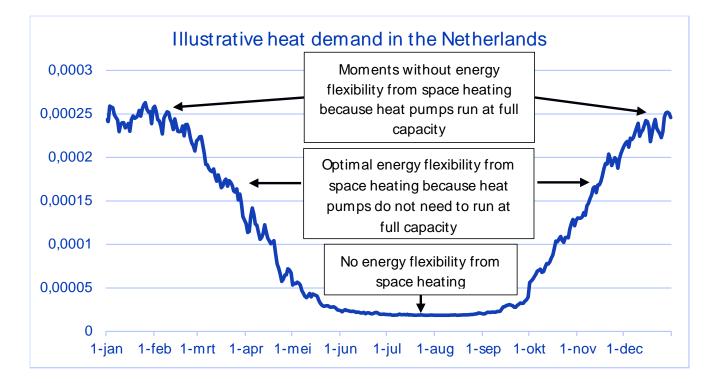


Smart heat pumps How can they support electrification?

Luka De Bruyckere (ECOS), Mente Konsman & Jorrit Nutma (TNO) 02.03.2023

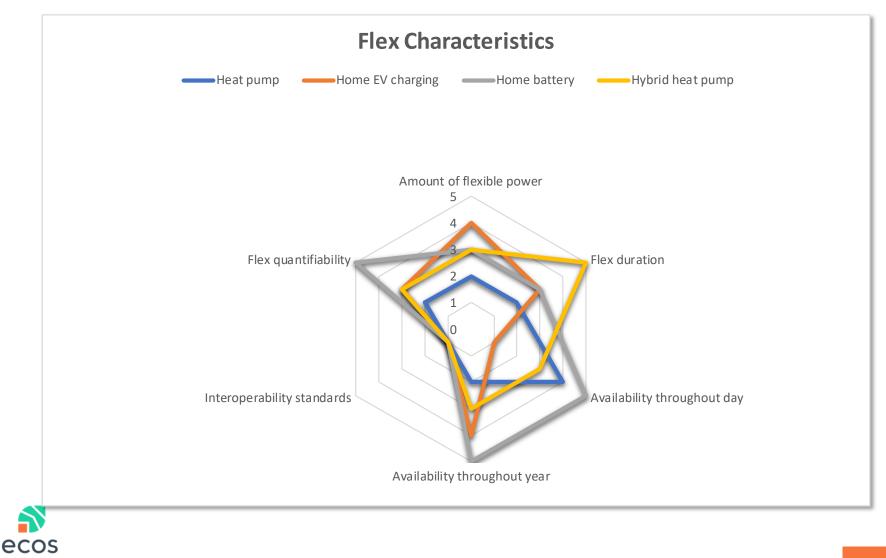
A study on smart heat pumps - context

- Electrification of heating: key for decarbonisation and a challenge for the grid (e.g. peak loads)
- EVs are **flexible loads** through smart charging
- Can heat pumps be smart and flexible as well?
 - How can potential barriers to smart HP flexibility be addressed?
 - What standardised communication protocols are needed?


How are heat pumps flexible?

• Space heating

- Allowing a small range around a temperature setpoint
- Amount of flexibility will depend on house/building
- DHW
 - Vary the "SoC" of the hot water buffer
 - A larger buffer provides more flex, but is less efficient
- Disinfenction
 - Freely schedule disinfenction cycle


Seasonal flexibility of heat pumps

- Heat pumps are not flexible in winter, but at the same they put a lot of stress on the grid
- Most flexible during spring and autumn

ecos

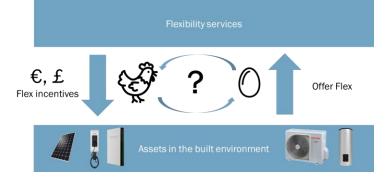
HP flex in relation to other devices

"Smart" heat pumps are needed...

• Connected

- Either local or cloud-based connectivity
- Provides additional services (web-based or via an app)
 - E.g. tariff based optimization
- (Remotely) updatable
 - Rollout of new functionality

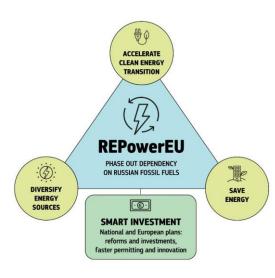
 Many OEMs try to build their own ecosystem by using proprietary solutions


...that support interoperable protocols

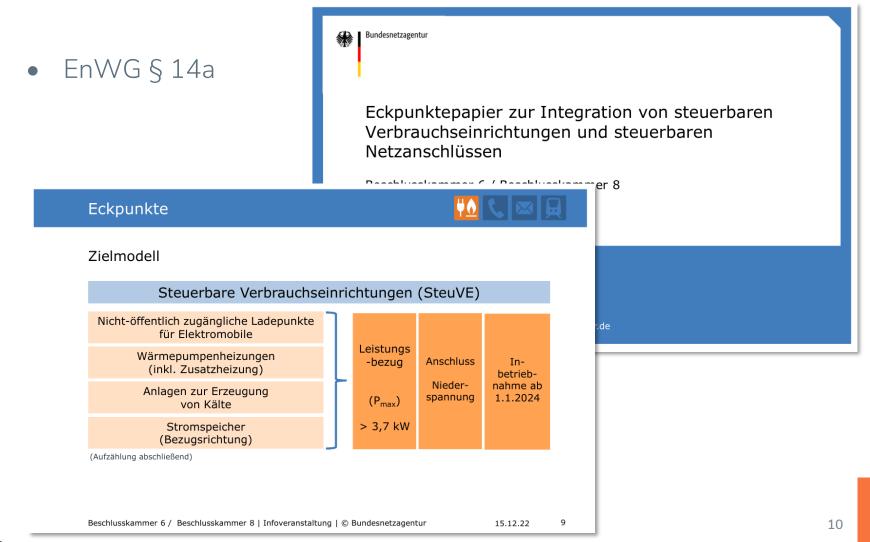
	Readily deployable	Adoption by manufactures	Support for use-cases currently known	Forward compatibility	Optional vs mandatory features
SG Ready	-	++	-		+
EN 50491-12-2 (S2)	-		++	++	+
EN 50631 (EEBUS)	+	+/-	+	-	+/-
OpenADR ⁴	++	+	+/-	+/-	-
OpenTherm	+/-	+/-	-	-	-

• No clear winner yet...

Main barriers



- OEM's are not always interested in interoperable solutions
 - E.g. heat pumps protocols are still very much proprietary
 - Many OEM's will not allow 3rd parties to exploit the flexibility of their devices
- End users are not yet asking for this
- Voluntarily market uptake of (an) interoperable standard(s) is expected to be very slow and will still take many years (> 5 to 10 years)



REPowerEU

- Ambitious goals with respect to heat pumps:
 - 2026: 20 million | 2030: 60 million
- Voluntarily market uptake of an interoperable standard will be too slow
- Big risk that the majority of those 60 million heat pumps will not be smart enough
 - Life-time expectancy is 15 to 20 years
- → Limited flex availability for many years to come!

Can regulation provide a break-through?

Standards versus regulation

Headline	Standards	Regulation	
Technical specifications	State of the art	Defined by legislators or only essential requirements	
Application	Voluntary	Mandatory	
Responsible person	Interested stakeholders	Legislator	
Development process	Openness & transparency	Depends on institution	
Decision making	Consensus	Democratic	
Revision	Every 5 years & easy	Foreseen in text or decided later, but burdensome	

Legislation on EU level is preferable

- Prevent specific regional solutions
 - The market for OEM's is international
 - Too costly to implement and mantain different solutions
 - Hinders interoperability
- European energy flexibility standards already exist
 - EN 50631 (EEBUS) and EN 50491-12-2 (S2)
- Find the right balance between speed of introduction and an interoperable and future-proof solution

Conclusions for a decarbonized heating and energy system

- The flexibility of HPs can reduce reliance on fossil fuels
 - Extra electricity demand is often powered by fossil fuels
 - \Rightarrow spreading demand for electricity reduces these peak loads
 - \Rightarrow more demand can be supplied by the same grid capacity
- A future-proof, interoperable and harmonised protocol is needed to use the flexibility potential of smart HPs
- EU legislation is the preferred route to such harmonised standard

Questions?

Thank you

Luka De Bruyckere • ECOS

Mente Konsman & Jorrit Nutma • TNO

Environmental Coalition on Standards

c/o WeWork Rue du Commerce 31 1000 Brussels, Belgium

+32 2 899 7680 info@ecostandard.org

www.ecostandard.org

